Sabtu, 15 Oktober 2011

Data Warehouse, Data Mart, OLAP, dan Data Mining

Resume PTI part 6

Data Warehouse
Data warehouse adalah basis data yang menyimpan data sekarang dan data masa lalu yang berasal dari berbagai sistem operasional dan sumber yang lain (sumber eksternal) yang menjadi perhatian penting bagi manajemen dalam organisasi dan ditujukan untuk keperluan analisis dan pelaporan manajemen dalam rangka pengambilan keputusan.
Data warehouse digunakan untuk mendukung pengambilan keputusan, bukan untuk melaksanakan pemrosesan transaksi
Data warehouse hanya berisi informasi-informasi yang relevan bagi kebutuhan pemakai yang dipakai untuk pengambilan keputusan

  • Menangani data saat ini
  • Data bisa saja disimpan pada beberapa platform
  • Data diorganisasikan berdasarkan fungsi atau operasi seperti penjualan, produksi, dan pemrosesan pesanan
  • Pemrosesan bersifat berulang
  • Untuk mendukung keputusan harian (operasional)
  • Melayani banyak pemakai operasional
  • Berorientasi pada transaksi
  • Lebih cenderung menangani data masa lalu
  • Data disimpan dalam satu platform
  • Data diorganisasikan menutut subjek seperti pelkanggan atau produk
  • Pemrosesan sewaktu-waktu, tak terstruktur, dan bersifat heuristik
  • Untuk mendukung keputusan yang strategis
  • Untuk mendukung pemakai manajerial yang berjumlah relatif sedikit
  • Berorientasi pada analisis


Sumber Data untuk DW
  1. Data operasional dalam organisasi, misalnya basis data pelanggan dan produk, dan
  2. Sumber eksternal yang diperoleh misalnya melalui Internet, basis data komersial, basis data pemasok atau pelanggan
  Berbagai data yang berasal dari sumber digabungkan dan diproses lebih lanjut oleh manajer data warehouse dan disimpan dalam basis data tersendiri.
  Selanjutnya, perangkat lunak seperti OLAP dan data mining dapat digunakan oleh pemakai untuk mengakses data warehouse


Sifat Data Warehouse
  Multidimensional yang berarti bahwa terdapat banyak lapisan kolom dan baris (Ini berbeda dengan tabel pada model relasional yang hanya berdimensi dua)
  Berdasarkan susunan data seperti itu, amatlah mudah untuk memperoleh jawaban atas pertanyaan seperti: “Berapakah jumlah produk 1 terjual di Jawa Tengah pada tahun n-3?”


Data Mart
  Bagian dari data warehouse yang mendukung kebutuhan pada tingkat departemen atau fungsi bisnis tertentu dalam perusahaan. Karakteristik yang membedakan data mart dan data warehouse adalah sebagai berikut (Connolly, Begg, Strachan 1999).
  Data mart memfokuskan hanya pada kebutuhan-kebutuhan pemakai yang terkait dalam sebuah departemen atau fungsi bisnis.
  Data mart biasanya tidak mengandung data operasional yang rinci seperti pada data warehouse.
  Data mart hanya mengandung sedikit informasi dibandingkan dengan data warehouse. Data mart lebih mudah dipahami dan dinavigasi.
Contoh Software Data Mart 

  • SmartMart (IBM)
  • Visual Warehouse (IBM)
  • PowerMart (Informatica)

OLAP
  OnLine Analytical Processing
Suatu jenis pemrosesan yang memanipulasi dan menganalisa data bervolume besar dari berbagai perspektif (multidimensi). OLAP seringkali disebut analisis data multidimensi
  Data multidimensi adalah data yang dapat dimodelkan sebagai atribut dimensi dan atribut ukuran
  Contoh atribut dimensi adalah nama barang dan warna barang, sedangkan contoh atribut ukuran adalah jumlah barang

Kemampuan OLAP
  Konsolidasi melibatkan pengelompokan data. Sebagai contoh kantor-kantor cabang dapat dikelompokkan menurut kota atau bahkan propinsi. Transaksi penjualan dapat ditinjau menurut tahun, triwulan, bulan, dan sebagainya. Kadangkala istilah rollup digunakan untuk menyatakan konsolidasi
  Drill-down adalah suatu bentuk yang merupakan kebalikan dari konsolidasi, yang memungkinkan data yang ringkas dijabarkan menjadi data yang lebih detail
  Slicing and dicing (atau dikenal dengan istilah pivoting) menjabarkan pada kemampuan untuk melihat data dari berbagai sudut pandang

Software OLAP
  Express Server (Oracle)
  PowerPlay (Cognos Software)
  Metacube (Informix/Stanford Technology Group)
  HighGate Project (Sybase)

Data Mining
  Perangkat lunak yang digunakan untuk menemukan pola-pola tersembunyi maupun hubungan-hubungan yang terdapat dalam basis data yang besar dan menghasilkan aturan-aturan yang digunakan untuk memperkirakan perilaku di masa medatang
  Data mining sering dikatakan berurusan dengan “penemuan pengetahuan” dalam basis data. Suatu aturan yang dihasilkan oleh data mining misalnya seperti berikut : “Kebanyakan pembeli mobil Forsa adalah wanita berusia di atas 30 tahun”.
Teknologi Untuk Data Mining
  Statistik
  Jaringan saraf (neural network)
  Logika kabur (fuzzy logic)
  Algoritma genetika
  dan berbagai teknologi kecerdasan buatan yang lain

Data Mining : Visualisasi Data
  Pendekatan data mining juga ada yang melalui visualisasi data
  Pada sistem seperti ini, pemakai akan dibantu untuk menemukan sendiri pola dari sejumlah data berukuran besar dengan didasarkan visualisasi oleh data mining

Tidak ada komentar:

Posting Komentar